
NASA/NAG-1-667/R/3.O/NCSU.CSC. (DFM,KCT, MAV)/Oct-87

Appendix 111

NASA/NAG-1-667/R/3.O/NCSU.CSC.(DFM ,KCT,MAV)/Oct-87

RSDIMU Acceptance Testing System

Version 3.0

May 1987

Sep 11 08:34 1987 ReadMe Page 1

Fault-Tolerant Software Experiment

OVERVIEW OF ACCEPTANCE SOFTWARE AND PROCEDURES

RSDIMU ACCEPTANCE TESTING SYSTEM (RSDIMU-ATS)

RSDIMU-ATS 3.O/PR/UNIX/FTS.NAsA-LaRC.Va/NCSU.CSC/O5-Mar-87

This note applies to the releases 3.0 of RSDIMU-ATS. The release
complies with the version 3.2/10-Feb-87 of the RSDIMU specifications.
This system is released for restricted use by sites involved in the NASA-LaRC
fault-tolerant software experiment.

Institutions participating in the program:
NASA-Langley Research Center, CRA, NCSU, UVA, UCLA
(ex-participants: RTI, UIUC).

Re-distribution and use of this system for purposes other than the
ones compatible with the current experiment is prohibited unless
explicit permission is obtained from the NASA-Langley Research Center
coordinator for this experiment (Dr. D.E. Echkardt).

The RSDIMU Acceptance Testing System (RSDIMU-ATS) was built to help
test and analyse multiversion RSDIMU procedures generated as part of a
NASA sponsored fault-tolerant software experiment in progress since
Spring 1985. RSDIMU-ATS is intended for use in
a UNIX environment and may need to be modified if UNIX-like, or
non-VAX systems are used. Part of the software needs to be
recompiled if used on non-VAX hardware (e.g. SUN workstations).
It was tested on VAX 11/780,785, and MicroVAX I1 hardware
under UNIX 4.2/4.3BSD, and Ultrixl.l/l.2 respectively.

The system is shipped on a 9-track magnetic tape (standard size) in
tar format at 1600 bpi, as directory tree rooted in ./fts87.

fts87
I

I I I I I I I I I
ReadMe accept code data generators* gold nonVAX - host** certify testcases*

* shipped on request only
* * to VAX sites shipped on request only

The following notes discuss more important features of the system.

1. ReadMe is the file containing this note.

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/OS-Mar-87

2. The core of the acceptance testing system is located in the directory
"accept". It is intended to help an experimenter run, evaluate and request
corrections of programs in a semiautomatic fashion. A more detailed
description of the accept system is found in ReadMe notes in
the accept/ and certify/ directories. The system is based on the use

Sep 11 0 8 : 3 4 1987 ReadMe Page 2

of a "golden" program for adjudication of the correctness of the answers
generated by the code being tested. The RSDIMU code is tested one
component (version) at the time against a pre-recorded output expected from
the "golden" code. Any differences from the expected answers have to be
examined in detail, and corrections justified in error correction
reports. Our confidence in the correctness of the "golden" code is
very high, however experimenters should still be on the look-out
for discrepancies indicating possible "golden" code errors. If such are
discovered all on-site testing should be frozen, and the RSDIMU-ATS
distribution site (NCSU) notified immediately. Similarly, if errors are
discovered in the ATS harness scripts please notify NCSU. A detailed
description of the acceptance procedure is located in accept/ ReadMe notes.
The basic idea is to follow an iterative correction process, i.e
test-correct (one or more errors at the time)-test etc. All communication
with programmers should follow guidelines given in certify/ReadMe notes.
Testing involves location of the fault(s) causing the first 20 failures
and its (their) removal. This repeats until no errors
are detected by the supplied acceptance test set.
The same test data set is used on all programs at all sites.

An extended analysis system providing MCF profile (intensity)
analysis is available on request, but it should not be used to perform
acceptance testing as part of the current experiment (see note 4) .

3. All the testcases in this release of the system comply with the
specification version 3.2/10-Feb-87. A test case entry consists of an
input record, and an output record. The latter contains what is believed
to be the correct answer to the input record according to the 3.2 specs,
and as generated/given by gold3v2.i.

A set of test cases was designed and generated for acceptance testing
rsdimu code. It consists of a group of 796 extremal/special value (ESV)
test cases and a group of 400 random test cases. All test cases are located
in the directory data/.

A successful pass through all the test cases gives an estimated lower
limit on the reliability of the rsdimu code of about 0.992 (valid for
the employed sampling profiles).

More details about the test cases can be found in the ReadMe notes in the
data/ directory.

Directory "generators" contains files and code one may need to generate
the ESV and random data from scratch. It is not expected that a
user working in a VAX-UNIX environment would have to do that (however,
see notes in the nonVAX host directory). In fact, it is not recommended
that sites generate (or-re-generate) data without consultation since
rounding and other subtle differences might appear between the newly
generated cases and the one3 on this distribution tape, resulting
in the use of somewhat different cases by different sites.

Directory testcases/ contains raw esv test cases (text form).

tested. If you do not wish to keep your code in that directory either use
4 . Directory "code" is assumed to contain the rsdimu code that is being

S.ep 11 08:34 1987 ReadMe Page 3

pointers/links to the code, or change the appropriate portions of the
acceptance system.

Note that RSDIMU-ATS is sensitive to the overall file structure that is
used in the system, and any changes should be made only after consultation
with NCSU.

It is extremely important for the success of the experiment that you
keep not only the final, corrected version of each program, but that
each intermediate version submitted for acceptance testing is saved
and tagged with an appropriate version number and information about
the changes/corrections (using the provided change form, in certify).

It is important that you promptly review all the returned error-reports.
In this experiment we are not implementing
back-to-back version testing and a formal automatic correlation
search-and-remove loop (we have the tools, but since this was not
part of the original experimental design we do not want to change the
rules now). However, all the discrepancies between individually
submitted and tested components and the "golden" answers should be
scrutinized with extreme care in case the difference is due to the
"golden" code, rather than your own code (a posible cause could be use
of RSDIMU-ATS in an environment not 100% compatible with the ones
in which the system was tested, see notes in nonVAX host/ directory). -

5. The "certify" directory contains code and files that are sent to each
maintenance/certification team. It contains a basic rsdimu driver
(to avoid interface problems) and instructions on its use. It also
contains a sample input and output, and an electronic error report file.

.

* certify ReadMe and ReadMe to certify notes to reflect local *
* Local site experimenters have to change/adjust the *
* electronic mail address, and-local version management *
* environment and approach (RCS, SCCS, or similar). *

* to prevent accidental changes in the team's testing *
* environment (prevent changes by making yourself the owner. *

-

* *
* You shou ld a l s o make all 'fts-' files in certify 'read - only' *

.

Whenever a change is made in the code it is expected that the programmer(s)
will record it using this report. A new version of the code, and error
and change report(s), have to be returned to the experimenters together.

It is essential that each program be given a version number and
associated with it the date of it creation. Every time a program is
corrected its version changes and should be recorded in the correction
report, as comments in the code itself, and should reflect in the file
name for the new code (a s kept in the "code" directory, and in the
"newcode" directory in accept/).

All versions of the code, i.e. all submitted corrected code, should be
preserved for future analysis. Examples are given in the "certify" directory
and in the "accept" (detailed procedure). Use magnetic tapes.

Sep 11 08:34 1987 ReadMe Page 4

If (disk or tape) space is a problem, we suggest that you store only the
difference between the original version and successive corrections
using for example Unix diff processor.

FOR ANY INFORMATION REGARDING THIS SYSTEM PLEASE CONTACT:

M.A. Vouk
North Carolina State University
Department of Computer Science, Box 8206
Raleigh, NC 27695-8206

Tel: 919-737-7886 (office)
919-737-2858 (departmental office)

USENET: mcnc!ece-csc!vouk
ARPA: vouk@ece-csc.ncsu.edu

Sep 11 08:39 1987 accept.ReadMe Page 1

Fault-Tolerant Software Experiment

ACCEPTANCE ENVIRONMENT

RSDIMU-ATS 3.0/PR/uNIX/FTS.NASA-LaRC.Va/NCSU.CSC/O5-Mar-87

This is the basic acceptance environment. Most of the shell scripts and
programs have either a help which describes its activation parameters
(invoke the script without any parameters), or internal documentation.
Where needed program source code is provided.

Current version of the system is intended for UNIX csh environment under
either 4.2/4.3BSD, or Ultrix 1.1/1.2, running on VAX hardware.

Comparison of the values computed by programs with those using golden
code is done using relative tolerance. It is possible to switch to
absolute tolerances if that is desired. Do not do that for acceptance
testing.

Testing tolerances are set to the following values within fts accept
and can be changed by modifying statements within fts - accept Tsee
fts - accept help):

DiffBestEst = 0.00024414
DiffLinOut = 0.00024414
DiffOffset = 0.00024414
tolerance - mode = relative

Please do not use different tolerances for your acceptance testing
before getting concurrence from all the other testing sites. Otherwise we
shall each end up testing and correcting different things.

There is no tolerance regarding the display values (five digits),
but one could allow for a difference in the last displayed digit.
To avoid display related warnings and "failures" of the type:
g o l d 4.9999 vs. computed 5.0000, and to therefore test only the
display algorithm, we inject (using voteestimates) golden values
for bestest and other real-valued variables prior to display computations.

The acceptance harness tests for agreement on eleven output variables
(infact 59, if elements of arrays are counted separately, number of elements
is given in parentheses). They are:

LINOFFSET, LINNOISE, LINOUT, LINFAILOUT, SYSSTATUS, BESTEST, CHANEST,
CHANFACE, DISMODE, DISUPPER and DISLOWER.

Critical variables are: (3)BESTEST, (8)LINFAILOUT, ((1)SYSSTATUS)

Non-critical: (1)DISMODE, (3)DISUPPER, (3)DISLOWER, (12)CHANEST, (4)CHANFACE

Intermediate: (SYSSTATUS), (8)LINOFFSET, (8)LINNOISE, (8)LINOUT

All variables are checked for each test case.

For more details on the checking of variables and tolerance used see

Sep 11 08:39 1987 accept.ReadMe Page 2

the listings of the fts harness files, and the April 86 NCSU Working
Notes from the Langley Zeeting (NASA.FTS/NCSUFJN/l/Apr-86)t and
UCLA notes from the same meeting.

To avoid accidental correctness problems output variables are "trashed"
before each test case is run.

~

The trash values injected in the various output variables of rsdimu are
as follows :

LINOFFSET : -9999.0
L I NOUT : 999999.0

BESTEST.ACCELERATION [1..3] : 9999999.0;
CHANEST [l..4].ACCELERATION [1..31 : 9999999.0;

DISMODE : 65534
DISUPPER [1..3] : 65534
DISLOWER [1..31 : 65534

The values for real variables (first four listed above)
cannot occur for the current set of input data, and are highly unlikely
otherwise. The display values are supposed to turn on only the G segment for
the least significant digit. Boolean output variables, and user defined
are initilized by the compiler (to zero).

Primary scripts:

fts - certify - shell script which activates fts accept with all.dat
test data and produces a correction request report
and test cases for the cerification team by
running fts correq. Certain program naming conventions
and running-options are built-in.

fts - accept - shell script for constructing, compiling and running
harness+rsdimu code.

l

fts - correq - correction request generation shell script, generates
a report/request suitable for mailing to the
maintenance teams.

Utility scripts and programs:

1 fts - listdata - script for listing test cases from the test data files.
fts - prnt - data listing program.

fts - prterr - program produces test cases suitable for use by
fts - driver.p code.

l fts - terl - block coverage computation script.
fts - IC - lower-case filter.

Sep 11 08:39 1987 accept.ReadMe Page 3

fts uc

fts nc
-

-

- upper-case filter.
- comment-delimiters lex-based filter.

Source code and script parts:

fts - io

fts - dbxbug - dbx bug control code.
fts - dbxinit - dbx initialization code.
fts - harness.declare - test harness declarations.

fts - harness.rest

fts - msgtext

fts - prnt.p

fts - prterr.p

- sed control code to flag "integer","real",and rsdimu i/o.

- test harness body.
- correction request message.
- source code for fts prnt.

- source code for fts prterr
-

-

Documentation and examples:

ReadMe

ReadMe to certify - certification procedure using fts certify
ReadMe - accept

example/

- general information about the "accept" directory.
- - -

- using fts accept. -

- directory with example outputs from an fts accept run -
(ncsuD7.i tested by executing:

fts accept ncsuD7.i ncd7 all -c -x > test.ncd7allti
fts-correq - ncd7 all > correq.ncd7
1 .

newcode/ - empty directory for testing results (reminder),

Data links:

all .dat

esv.dat - link to extrema1 and special value (esv) test cases.
randNCSU.dat

randCRA.dat

- symbolic link to esv+random acceptance test cases.

- link to independent random test cases (uniform profile).
- link to independent random test cases (shaped profile).

All .dat files are in ../data.
It is also assumed that the code to be tested is in ../code.

Sep 11 08:39 1987 accept.ReadMe Page 4

The fts - IC, fts - uc, fts - nc, and initial fts - io filters were written by RTI.

The filter fts - io (integer/real, and i/o) is rather crude.
It will miss 'real' at the begining of a line.
It may also cause false warnings regarding use of integer and real types,
and of i / o in the rsdimu code. In those cases hand editing and
recompilation of <work - name>.p (rsdimu+harness) files may be
necessary. If editing, search for two question marks ? ? .
If recompiling use: pc -s -C -g -2 options. Re-run fts - accept without
the -c option.

Note that -s compiler option yields messages regarding non-standard
use of Pascal in the code (primarily the harness code). These
messages should be ignored.

l Alternatively, delete the first two lines (real/integer),
or third and fourth lines (i/o) of the fts - io code.

fts nc filter for comments may cause problems by making nested
comments of type { (* comment *) } transform to { { comment } }
which is illegal. This filter can be excluded from the processing
pipe in fts - accept.

Sep 11 08:39 1987 accept.ReadMe - accept Page 1

Fault-Tolerant Software Experiment

PROCEDURE FOR ACCEPTANCE TESTING

RSDIMU-ATS 3.0/PR/uNIX/FTs.NASA-LaRC.Va/NCSU.CSC/O!j-Mar-87

.
* *
* For the purpose of conducting the acceptance testing (certification *
* Unless you intend to use fts accept directly, rather tEan through *
* of the 20 programs) it is recommended that you use fts certify. *
* the fts certify facility, yoc do not need to read this file. * - * *
.

* * * * * * *

It is assumed that the communication between the experimenters and the
maintenance personnel will be via electronic mail. It is further
assumed that the experimenter has full access to maintenance personnel
files, but the reverse is not true. ~t is also assumed that the acceptance
testing is performed in csh in UNIX 4.2/4.3BSD, or Ultrix 1.1/1.2
environments running on vAX hardware (else see nonVAX-host/ directory).

I.

The testing begins by placing the code which is to be tested into the code/
directory. Enter the accept/ directory and start
the initial round of testing by executing the fts accept shell script.
It is recommended that you use the -x option and Eenefit from the
coverage information thus provided. For example:

fts - accept ncsuB2.i ncb2 all -c -x > test.ncb2all&

NOTE: YOU CANNOT RUN TWO fts accept JOBS FROM THE SAME DIRECTORY AT THE
SAME TIME (IN BACKGROURD). THE SYSTEM WAS NOT DESIGNED FOR THAT
AND YOU CAN END UP WITH A MESS. YOU CAN, HOWEVER, KEEP TWO
DIRECTORIES, SAY ACCEPT1 AND ACCEPT2 AND RUN AN fts - accept FROM
EACH OF THEM WITHOUT INTERFERENCE.

The run should either result in error messages (exit code <= 8) or should
complete successfully (exit code 11). when the background job ends check the
test.<name>all file carefully.

* No compiler errors or missing voter call problems (exit status > 5) .

* Fatal execution time errors exit status = 7.

* Differences detected from expected output exit status =8.

11.

If the test run ends with any status but exit(ll), i.e. complete success,
produce an error correction request for the maintenance team

Sep 11 08:39 1987 accept.ReadMe - accept Page 2

by running fts - correq script. For example:

fts - correq ncb2 all > correq.ncb2

Make sure that the number of failures you wish to analyse is set to 1.
For this see fts correq code (run fts correq without parameters).
File errdata.ncb2 will contain input aata for failed cases in a form
that is suitable for use by the "fts driver.p" code in certify/.
Check the content of correq.ncb2 and-mail it to the maintenance team
working on the <name> code (in examples: ncsuB2.i and higher versions,
i.e. <name>=ncb2, or ncb3 etc).

You may also have situations where you need to send non-standard messages
as part of the correction request. For example, people may send you
code and reports with incorrect or inappropriate version numbers.
In situations like that create and insert the message at the begining
of the correq.<name> file, just after the standard initial paragraph.

111.

Now create a subdirectory that will hold the starting, and all subsequent
versions for a particular program(mming team). For example:

mkdir newcode/ncsuB

make a sub-subdirectory for the current program version:

mkdir newcode/ncsuB/v2

and move all the files you want to keep into that sub-sub directory, e.g.

mv *ncb2* newcode/ncsuB/v2

You may wish to use diff and compress processors to reduce stored
file sizes.

Unless you are interested in doing further correlation analysis and
extracting intensity functions and experimental MCF profiles (for the
purpose of detecting and eliminating inter-version dependence during
the acceptance testing, not assumed a standard procedure in this
experiment) you may not wish to keep trace.<name>all, vect.<name>all and
binrep.<name>all files. The terl.<name>all file contains a compressed
overview of the executed code blocks (all begining with 0.---(have not been
executed and you should find out why). You will not generate the
trace, vect and terl files, nor keep binrep if you do not use the - x option.
You may also wish to dispense with <name> and <name>.p files which are
the executable harness+rsdimu and source harness+rsdimu respectively.
We would recommend that you save at least the test.<name>all and
the error.<name>all files.

Any communication (questions and answers) received prior to corrected
program version are also saved into the "active" newcode sub-sub directory

etc. a s "ql", "alt' , llq2", lla2"

IV.

Sep 11 08:39 1987 accept.ReadMe - accept Page 3

Upon receiving a message with the location of the latest corrected
version, and of the correction/change report(s), cd to accept/:

* Create a new subsubdirectory in the appropriate program subdirectory
e.g. nCSuB3.i location and change report have just been received

mkdir newcode/ncsuB/v3

* Save the location/change report message into v<number>, e.g.
from inside the mail:

s < # > newcode/ncsuB/v3/correction - report

where < # > is the number of the mail message on your h-list.

* Then (<path> points to maintenance team location the code):

cp <path>/ncsuB3.i newcode/ncsuB/v3/ncsuB3.i

cp <path>/ncsuB3.i ../code/ncsuB3.i

fts - accept ncsuB3.i ncb3 all -c -x > test.ncb3all&

Now repeat the previous steps depending on the results of the test run, i.e.
run a fts correq if necessary, move results of the run into, for example v3
etc. Use appropriate university name and version numbers.

.
Notes: .

It is expected that the maintenance team makes a single error correction
that was requested by the correq.<name> report and sends back to you
a mail message giving the location in their directories of the new
and corrected code version, the new version number and one (or more
if several changes had to be made to correct an error) error correction
report(s). Save the received location message and the correction report into
the "active" newcode sub-sub directory as "correction - report", e.g.

newcode/ncsuB/v2/correction - report

You procede then to pick-up the new version of the code and copy
it into appropriate newcode sub-sub file, and ../code file (you may wish
to use pointers/links to save space instead). Check that they send you
the code and the report with an appropriate version numbers everytime.

.
> >
> Check the error report they send against the test report you have!!! >
> If there is any indication at all that the difference may be due >
> to an error in the "golden" code (i.e. supplied expected answers) >
> freeze all testing and immediately inform ATS distribution site, >
> i.e. NCSU (see fts86/ReadMe for address, phone etc.). >
> >
.

Sep 11 08:39 1987 accept.ReadMe - accept Page 4
i

It is extremely important for the success of the experiment that you
keep not only the final, corrected version of each program, but that
each intemediate version submitted for acceptance testing is saved
and tagged with an appropriate version number and information about
the changes/corrections (using the provided change form). It is
expected that programmers will correct one error at a time (and should
not be given requests for more than one correction at a time), so
that we can keep track of the influence particular errors had on
the overall system failure probability etc.

The "certify" directory contains code and files that would be sent to each
maintenance/certification team. It contains a basic rsdimu driver
(to avoid interface problems) and instructions on its use. It also
contains a sample input and output, and an electronic error report file.
Whenever a change is made in the code it is expected that the programmer
will record using this report. The new version of the code and the error
and change report copy are both returned to the experimenters.

I It is essential that each program be given a version number and
associated with it the date of it creation. Every time a program is

I corrected its version changes and should be recorded in the correction
report, as comments in the code itself, and should reflect in the file
name f o r the new code (a s kept in the "code" directory, and in the
"newcode" directory in accept/).

.

Sep 11 08:39 1987 accept.ReadMe to certify Page 1 - -

Fault-Tolerant Software Experiment

PROCEDURE FOR CERTIFICATION TESTING

RSDIMU-ATS 3.O/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

It is assumed that the communication between the experimenters and the
maintenance personnel will be via electronic mail. It is further
assumed that the experimenter has full access to maintenance personnel
files, but the reverse is not true. It is also assumed that the acceptance
testing is performed in csh in UNIX 4.2/4.3BSD, or Ultrix 1.1/1.2
environments running on VAX hardware (else see nonVAX host/ directory). -

I.

The testing begins by placing the code which is to be tested into the code/
directory. Enter the accept/ directory and start
the initial round of testing by executing the fts certify shell script.
For example:

-

or
fts - certify ncsuD7.i ncd7

fts - certify ncsuD7.i ncd7 > certify.ncd7&

The latter form should be used if you wish to run in the background.

NOTE: YOU CANNOT RUN TWO fts certify JOBS FROM THE SAME DIRECTORY AT THE
SAME TIME (EVEN IN BACEGROUND). THE SYSTEM WAS NOT DESIGNED FOR THAT
AND YOU CAN END UP WITH A MESS. YOU CAN, HOWEVER, KEEP TWO

EACH OF THEM WITHOUT INTERFERENCE.
DIRECTORIES, SAY ACCEPT1 AND ACCEPT2 AND RUN AN fts certify FROM -

fts certify calls fts accept with all.dat testset and -c option. Output
is automatically routed into file test.tname>all. This file will then
contain information about the acceptance test run, and will be used
as the basis for forming a correction request file correq.<name>.

The run should either result in error messages (exit code <= 8) or should
complete successfully (exit code 11). When the job ends check the
test.<name>all file carefully.

* No compiler errors or missing voter call problems (exit status > 5).

* Fatal execution time errors exit status = 7.

* Differences detected from expected output exit status =8.

11.

If the test run ends with any status but exit(ll), i.e. complete success,
an error correction request will be produced for the maintenance team.
The correction request will be in correq.<name>, and the test cases

sep 11 08:39 1987 accept.ReadMe - - to certify Page 2

mkdir newcode/ncsuD/v7

and move all the files you want to keep into that sub-sub directory, e.g.

mv *ncd7* newcode/ncsuD/v7

Unless you are interested in doing correlation analysis and

that caused up to the first 2 0 failures will be in errdata.<name>.

1 Check the content of correq.<name> and mail it to the maintenance team
working on the <name> code (in examples: ncsuD7.i and higher versions,
i.e. <name>=ncd7, or ncd8 etc).

i

Mail or copy directly into the directory of the maintenace team file
errdata.<name>. The format of the data in this file is suitable for
direct use by their "driver" program, so that they can do their own

l testing.

.
* *
* W A R N I N G *
* *
* Your system may have a byte limit on mail messages that can be passed * * through it (e.g. 100,000 bytes). In that case you may find that *
* your correction report may be too large, and may become truncated *
* by the e-mail system. ~t is safer to send only short messages and *
* using cp. * * to transfer long files directly into certification team's directory *
* *
* e.g. 20 failures in ncsuD7.i generate a correq.ncd7 request file of *
* about 4000 lines of code (about 170,000 bytes). * * *
.

You may also have situations where you need to send non-standard messages
as part of the correction request. For example, people may send you
code and reports with incorrect or inappropriate version numbers.
In situations like that create and insert the message at the begining
of the correq.<name> file, just after the standard initial paragraph.

111.

The following procedure describes program and data version management
without RCS or SCCS. You should read it regardless of the management
procedure you will use so that you can decide what to save/store.

Create a subdirectory that will hold the starting, and all subsequent
versions for a particular program(mming team). For example:

mkdir newcode/ncsuD

~ make a sub-subdirectory for the current program version:

Sep 11 08:39 1987 accept.ReadMe - - to certify Page 3

experiment) you may not wish to keep trace.<name>all, vect.<name>all and
binrep.<name>all files. The terl.<name>all file contains a compressed
overview of the executed code blocks (all begining with 0.---1 have not been
executed and you should find out why). You will not generate the
trace, vect and terl files, nor keep binrep if you do not use the -x option.
When using fts certify this is default in or der to reduce program testing
time and sve sforage.

You may also wish to dispense with <name> and <name>.p files which are
the executable harness+rsdimu and source harness+rsdimu respectively.
We would recommend that you save at least the test.<name>all and
the error.<name>all files.

To save space you can save only the difference in the code between the
starting version and the new version (e.g. ncsuD7.i and ncsuD8.i, or
ncsuD7.i and ncsuD9.i). For that purpose use the diff processor
(read DIFF(1) manual).

You can further reduce storage space by "compressing" all the saved files
using compress, or any other code compression processor available on
your machine.

Whatever the scheme, make sure that you can rebuild the starting files
and versions.

Any communication (questions and answers) received prior to corrected
program version are also saved into the "active" newcode sub-sub directory
as "ql", llaltl, I1q2It, "a2" etc.

IV.

Upon receiving a message with the location of the latest corrected
version, and of the correction/change report(s1, cd to accept/:

* Create a new subsubdirectory in the appropriate program subdirectory
e.g. ncsuD8.i location and change report have just been received

mkdir newcode/ncsuD/v8

* Save the location/change report message into v<number>, e.g.
from inside the mail:

s < # > newcode/ncsuD/v8/correction - report

where < # > is the number of the mail message on your h-list.

* Then (<path> points to maintenance team location the code):

cp <path>/ncsuD8.i newcode/ncsuD/v8/ncsuD8.i

cp <path>/ncsuD8.i ../code/ncsuD8.i

alternative for latter (saves space):
{

cd ../code

Sep 11 08:39 1987 accept.ReadMe - - to certify Page 4

In -s ../accept/newcode/ncsuD/v8/ncsuD8.i ncsuD8.i
I)

fts - certify ncsuD8.i ncd8 > certify.ncd8&

Now repeat the previous steps depending on the results of the test run.
Use appropriate university name and version numbers.

~ .
Notes: .

It is expected that the maintenance team makes a error corrections for
up to the first 2 0 reported failures that were requested by the correq.<name>.
Certification (maintenance) team is supposed to mail back a
message giving the location in their directories of the new
and corrected code version, the new version number and one (or more
if several changes had to be made) error correction report(s).
You may if you wish use hardcopy correction reports, but there is a
danger that the reports may evenuatly get separated from the code and
corrections to which they refer. Furthermore if kept in electronic form

Save the received location message and the correction report(s) into
the "active" newcode sub-sub directory as "correction - report", e.g.

I it may be easier to analyse them.

newcode/ncsuD/v8/correction - report

You procede then to pick-up the new version of the code and copy
it into appropriate newcode sub-sub file, and ../code file (you may wish
to use pointers/links to save space instead). Check that teams send you
the code and the report with an appropriate version numbers everytime.

.
> >
> Check the error report tems send against the test report you have!!! >
> If there is any indication at all that the difference may be due >
> to an error in the "golden" code (i.e. supplied expected answers) >
> freeze all testing and immediately inform ATS distribution site, >
> i.e. NCSU (see fts87/ReadMe for address, phone etc.). >
> >
.

It is extremely important for the success of the experiment that you
keep not only the final, corrected version of each program, but that
each intemediate version submitted for acceptance testing is saved
and tagged with an appropriate version number and information about
the changes/corrections (using the provided change form).

The "certify" directory contains code and files that would be sent to each
maintenance/certification team. It contains a basic rsdimu driver
(to avoid interface problems) and instructions on its use. It also
contains a sample input and output, and an electronic error report file.
Whenever a change is made in the code it is expected that the programmer
will record it using this report. The new version of the code and the error

Sep 11 08:39 1987 accept.ReadMe - - to certify Page 5

and change report copy(ies) are returned to the experimenters.

It is essential that each program be given a version number and
associated with it the date of its creation. Every time a program is
corrected its version changes and should be recorded in the correction
report, as comments in the code itself, and should reflect in the file
name for the new code (as kept in the "code" directory, and in the
"newcode" directory in accept/).

.

Sep 11 08:39 1987 certify.ReadMe Page 1

for the cases you failed (suitable for use with your system are
expected to in a file of the form

Fault-Tolerant Software Experiment

I Instructions for Certification Teams

RSDIMU-ATS 3.O/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/12-May-87

Welcome to the FTS certification project. This is a NASA sponsored experiment
in Fault-Tolerant Software. Your part will be to find and correct any bugs in
the software, under controlled conditions. The software means one of the twenty
programs that were produced during the first phase of this experiment.

You should be in possession of the following documentation (if you are not
please see your experiment supervisor).

RSDIMU specification (version 3.2/10-Feb-87)

RSDIMU specification (version 2.1/19-Sep-85)
~

You should also have a directory called "certify" sent to you by the
FTS experimenters. In this directory you have the code for
the driver, instructions for its use, and some test data.
All file that are part of this testing package begin with 'fts ' and
should not be modifed by you except under special circumstances, and
after consultation with your experiment supervisor. You can
of course copy them and then modify them at will. This is not advised.

You will be receiving messages about needed corrections via e-mail. You
should read them, correct the program to the best of your abilities,
and test it. The data on which the program failed will either be attached
to the message o r will be sent to you separately. You can then use this
data to test your code.

The message with correction requests is expected to be of the form
I

correq.<name>

errdata.<name>all

Once you are satisfied that you have found the fault that is causing
the error(s) you were requested to correct, you should fill out
(make a copy) the error report and send it to your supervisor's e-mail address.
Your site may also requTre you to fill in and submit a hard copy of the report.
In the same message you should also tell us what is the current version
3f your program and in which file one can find it (we shall need copies
~ 3 f your corrected programs so do not change them once you have sent a

.
S e p 11 08:39 1987 certify.ReadMe Page 2

message that one is ready for pick-up).

The program which you have just
finished correcting must be in a file called <unam>XX.vYY,
where <unam> is the agreed upon abbreviation for the university at which the
code was originally produced (e.g. ncsu, ucla, uiuc, uva), XX
stands for the letter and number associated with your program code,
and YY is the current version of your code (you begin by incrementing the number
in XX by one). For example C6, i.e. ncsuC6.vO7 means that you have updated
ncsuC6 to version 7). YOU should also learn to update the version number
in the program header in the style in which it is already there.
If it is not part of the code you should add a comment header with the
version number and date (e.g. ncsuC6.v07/15-Jul-86). A sample header is
shown in fts - driver.p code.

If in doubt please ask about details.

Please bear in mind that the original specifications have been changed
and that the latest version (the one you have) may require you not only
to correct existing code, but also to add to it (for example missing calls to
voter routines).

File ReadMe data contains a description of the test cases that are being
used to tesF your code. You should use this list in conjunction with
the correq.<name> report to locate and identify errors.

Please read the documentation you have received for the experiment.
Note that you should keep all communications concerning the
program you have been given between yourself and the experimenter,
and should communicate through electronic mail

.

e-mail address is: fts

.

Please feel free to ask e-mail questions about any p a r t of this experiment.

Note the following rules and guidelines:

1. Do not change protections on any work-related files.

2 . Communications are restricted during this experiment as follows.
You may not discuss any aspects of your work in this
job with other programmers. Any work-related communication
between you and the Professor is to be conducted via UNIX mail. We
require this so in the event of an error o r ambiguity in the
specifications, or some other significant event, all students
may be sent a copy of the mailed question and its answer.

receive in a timely manner all mail concerning answers t o
questions, any updates in the specifications etc.
You should also fill in a time-sheet once a day.

3 . Every day you work you must log onto your UNIX account. In this way you will

Sep 11 08:39 1987 certify.ReadMe Page 3

4 . Your Professor will read the UNIX mail once early in the morning and again
in the late evening (Monday through Friday). All questions should be
directed to him/her.

5. It is your responsibility to read about UNIX tools you are not familiar
or comfortable with.

6. Once a week, on Friday, you should submit a weekly progress report,
describing the work you did during the week (number and type of
errors you have corrected, any problems you have encountered running
the driver harness, hardware problems, the total time you have spent
working on the project during the week, whether reading or
using the computer, if reading you should specify what and which
part of the specs or which error prompted you to that action, etc.).
Report is to be submitted via e-mail.

Good luck

sep 11 08:39 1987 certify.ReadMe data Page 1 -

Fault-Tolerant Software Experiment

Data

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/OS-Mar-87

All the testcases in this release of the system comply with the
specification version 3.2/10-Feb-87. A test case entry consists of an
input record, and an output record. The latter contains what is believed
to be the correct answer to the input record according to the 3.2 specs,
and as generated/given by gold3v2.i.

Your code will be tested with a set of extrema1 and special value (E S V)
test cases (796 of them) followed by 400 random test cases.

The ESV test cases are based on an initial random case which was
then modified step by step to check a particular function and/or
option. In the following overview of the ESV data only the principal
features of the data sub-classes are given, along with the
principal variables that were changed at any one time. Changes are
given with respect to a base test case (usually #l).

1. A general random test case, DMODE=O (RTI, foofl.dat),
votecontrol=O. Checks that all the voters are off.

2-7. Test cases checking voter placement. Voters in the fts harness are
activated via VOTECONTROL one at the time. VOTECONTROL
activation order 1, 3, 2, 4, 8 16.

Votecontrol and their activation results are detailed below:

1 : Sets the Linnoise values of first 4 sensors to true.
3 : Sets Linoffset value of first sensor to 0.0
2 : Sets linout value of first sensor to BADDAT;
4 : Sets SYSSTATUS to false.
8 : sets the estimate values of acceleration values to

16 : Sets garbage values in display output values.
large values of 99999.0

8 General test case, (base 1) DMODE = 88.

9-19 base = case #1, systematic changes in DMODE testing for principal
display modes (0,21-24,31-33,1,2,99).
Check for various display modes which do valid displays, and
the boundary display modes.

20-27 Check for mod 4096 (all chans), base = #1, 0ffraw:selected
values are increased with 4096 or 8192 to check if only
lower order bits are being used.

Sep 11 08:39 1987 certify.ReadMe - data Page 2

28-52. base = #1, changes in DMODE and LINFAILIN, checking for different
"blank" displays, specific failure display formats, and failures
of one sensor (28-37), whole faces (two sensors, 38-43),
and various combinations of four failing sensors (44-521,
with one instance of eight failed sensors (50).
The sensors are failed on input, to check for I display.

(to ultimately test all values 0-99 by the end of the ESV set).
Noise on calibration (OFFRAW) in steps of +/- 6, +/-12,
+/- 18 and +/- 24. Case 57 test has LINSTD=8, DMODE=l and noise
on calibration channel 1 of +/- 24 (8x3=24).
Also checked are the display failure formats for LINNOISE
values, and the correct use of variable LINSTD, and correct
computation of calibration noise levels.
6 and 24 were chosen because these were the boundary cases
for noisiness for the linstd values chosen.

53-85. base = #1, random activation of different display modes continues

87-110 changes in LINSTD (9, 2,l with +/- 24 on i/p channels)
to check correct use of LINSTD variable and sensitivity of
the calibration procedure.

86, 111-149. changes in RAWLIN, DMODE, LINFAILIN, various combinations of
failures on input, noise and edgevector failures, base = #l.
Values in RAWLIN are so changed as to reflect an assured failure
in edgevector test, so that there are no ambiguities left.
The values of DMODE are again chosen to test the display
failure format. The failures are combined with failures on input, to
see if the edgevector tests are properly employed.

150-151 Large changes in misalign [i,6) field, only the sixth axis
was chosen for contamination because according to the latest
specifications that is the only angle not used in the
rsdimu procedure. It use significantly changes output values only
if its value is much larger than normal. Changes
in the values of other angles will not provided new information.

152-392. Test cases checking for the minimal sensor noise levels for

393-796

failure declaration. Cases 152-365 no prior failures. Cases
366-392 prior failures on one and two faces.
These test cases test the sensitivity requirements that
all three edges fail the edgevector test before a failure is
declared. False alarms are raised when only one or two edges fail.
The normal value for the triplet threshold is 49 counts away from
the correct figure for no prior failures on the rsdimu. The
threshold values will change with the number and place
of previous failures.

CRA proposed test cases with various combinations of
sensors failed on input and up to one additional sensor
failed in the edge vector test.

56 test cases with 1 sensor failed on input.
168 cases with two sensors failed on input.
120 cases with 3 sensors failed on input.

30 cases with 4 sensors failed on input.
8 cases with 7 sensors failed on input.

f

Sep 11 08:39 1987 certify.ReadMe - data Page 3

and the rest are other combinations.

Test cases numbers higher than 796 refer to random test cases.

~ ~~~ __ ~

Sep 11 08:39 1987 certify.ReadMe - driver Page 1

Fault-Tolerant Software Experiment

DRIVER FOR THE RSDIMU CERTIFICATION

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

* * * * You do not need to read this if you will be using fts - compile and

fts driver.p is a Pascal driver program to run your rsdimu procedure.You
may-make modifications to suit your tastes, but it is adequate in its present
form. To compile it you have to include your file containing rsdimu procedure
in the place provided in the source code. (It has to have a . i suffix to
run successfully). Also you have to make a call to rsdimu procedure at
the place designated.

fts execute macros. -

The compiler command would be:

! pc -C - s -0 driver fts - driver.p

- s option would circumvent any problems you may encounter due to mixed
letter cases and non-standard i/o handling.

The executable module is created in file "driver", which can be run
as a shell command.
The driver expects the testcase input in a format as shown in the file
"fts errdata.sample". The output, after a successful run of the driver,
is in fts sample.out. Note driver is interactive.
If you wish to generate your own input data you will need to use the
"NO - output - data" option.

Note that there are several parameters which are special and are
not part of the rsdimu variable/parameter set and are not given in
the specs. These variables appear at the beginning of the fts errdata.sample
file. The rsdimu parameters begin with 15.0000 f o r obase. If you wish to
use the fts driver.p on its own and without golden data then you need
to retain on ly the line before 15.0000 (votecontrol, case number).
Votecontrol serves to control special voter routine actions (whether
a particular voter changes the values of it parameters or not). It is used
solely for testing placement and use of the voter routines. You need
to leave it as is for regression testing of your code after correction.
You may experiment with it if you wish to build you own test sets.
You do not have to worry about it in the rsdimu code, the variable
is taken care of in the driver code.

The other parameters control the comparisons with golden answer and
you do not need to use them, unless you provide full format of the
file (with dummy golden answers for example).

Sep 11 0 8 : 3 9 1987 certify.ReadMe for testing Page 1 - -

Fault-Tolerant Software Experiment

Testing RSDIMU code

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/o!j-Mar-87

Using the fts compile and fts execute macros is simple. Run them without
any parameters to obtain the aescription of the paramters you need. The
following sample should help.

It is assumed that you have received correq.ncd6 and errdata.ncd6all
from your experiment supervisor.

To compile program ncsuD7 which is (let's assume s o) in your certify
file, and is the program you have just corrected run

fts - compile ncsuD7 7 > c.7&

When the run finishes check c.7 for compilation errors etc. If ok
proceed (rsdimu.7 will contain driver+ncsuD7 executable code).

fts execute 7 errdata.ncd6all ncsuD7 > x.7& -

When job finishes check x . 7 . rf there still are differences from the
expected outputs go back and correct your code once more, otherwise
submit error - reports and the new code to your supervisor.

Make use of the correq.ncd6 and ReadMe data. -

Sep 11 08:39 1987 data.ReadMe Page 1

Fault-Tolerant Software Experiment

DATA FOR THE ACCEPTANCE TESTING

RSDIMU ACCEPTANCE TESTING SYSTEM (RSDIMU-ATS)

RSDIMU-ATS 3.O/PR/UNIX/FTS.NAsA-LaRC.Va/NCSU.CSC/o5-Mar-87

All the testcases in this release of the system comply with the
specification version 3.2/10-Feb-87. A test case entry consists of an
input record, and an output record. The latter contains what is believed
to be the correct answer to the input record according to the 3.2 specs,
and as generated/given by gold3v2.i.

The test cases are supplied in Pascal readable files.
The format can be found in the fts prnt.p source code in accept/.
The format in which the test cases-are given is suitable for use
with the accept/fts accept. Use of the system in non-Vax and UNIX-like
environments is described in nonVAX host directory, data may be
re-generated using code suplied in fhe "generators" directory.
The latter action is should not be undertaken without consultation with
the ATS distribution site (NCSU).

If you wish to print out all, or some, of the test cases use
accept/fts - listdata.

If you wish to compare (difference) test cases use fts - diff.

This set of test cases was designed and generated for acceptance testing
of the rsdimu code. It consists of a group of 7 9 6 extremal/special value
(ESV) test cases and a group of 400 random test cases. There are four files
of data:

all .dat - ESV test cases, followed by random test cases
(randomNCSU.dat, then randomCRA.dat).

esv.dat - ESV test cases, only (7 9 6) .

~ randNCSU.dat - random test cases, only (uniform sampling, 2 0 0) .

I
randCRA.dat - random test cases, only (shaped sampling, 2 0 0) .

A successful pass through all the test cases gives an estimated lower
limit on the reliability of the rsdimu code of about 0.992 (valid for
the employed sampling profile).

The all.dat set should provide 100% block coverage of the rsdimu
code. If this is not the case (running fts accept with -x option will
give the coverage info), one should very cgrefully examine the tested
code in places where coverage was not provided. The nature of the
rsdimu problem, and the specifications, is such that a thorough
programmer can provide for situations and functions which are not
explicitly handled in the specifications (e.g. singular matrices,
large changes in the slope constants leading to large raw acceleration

Sep 11 08:39 1987 data.ReadMe Page 2

values). Redundant code of the type that cannot be excited according
to the current specifications, but could possibly be needed under
exceptional circumstances, should be tested by the programmers
providing it. They should also provide test cases for these
situations (if possible). Alternatively they should provide a written
explanation of the cirumstances and reasons for including that
particular code. The golden program gold3vl.i, for example has 5 blocks
handling display of extrema1 input acceleration values (>log) which are
not tested by the current acceptance data set since such large input
values are outside the conversion range of the provided equations.

The coverage figures should be considered only in the last stage of the
acceptance testing, i.e. when all.dat cases have been passed without
a failure, and all the corrections requests have been implemented
(e.g. after the final regression pass through all.dat).

The ESV data set is further described in the ReadMe esv file, and
the random data sets are described in the ReadMe - random file.

Sep 11 08:39 1987 data.ReadMe - esv Page 1

Fault-Tolerant Software Experiment

THE ESV DATA FOR THE ACCEPTANCE TESTING

RSDIMU ACCEPTANCE TESTING SYSTEM (RSDIMU-ATS)

RSDIMU-ATS 3.O/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/O5-Mar-87

The data file esv.dat contains 796 extrema1 and special (ESV) test
cases. The test cases were designed to provide full functional coverage
of the RSDIMU specifications v3.2/10-Feb-87.

The test cases are based on an initial random case which was
then modified step by step to check a particular function and/or
option. In the following overview of the ESV data only the principal
features of the data sub-classes are given, along with the
principal variables that were changed at any one time. Changes are
given with respect to a base test case (usually #l).
Listing of all or some of the test cases can be obtained by running
accept/fts listdata. Difference between test cases may be examined
using fts - aiff.

1. A general random test case, DMODE=O (RTI, foofl.dat),
votecontrol-0. Checks that all the voters are off.

2-7. Test cases checking voter placement. Voters in the fts harness are
activated via VOTECONTROL one at the time. VOTECONTi?OL
activation order 1, 3, 2 , 4, 8 16.

Votecontrol and their activation results are detailed below:

1 : Sets the Linnoise values of first 4 sensors to true.
3 : Sets Linoffset value of first sensor to 0.0
2 : Sets linout value of first sensor to BADDAT;
4 : Sets SYSSTATUS to false.
8 : sets the estimate values of acceleration values to

16 : Sets garbage values in display output values.
large values of 99999.0

8 General test case, (base 1) DMODE = 88.

9-19 base = case #1, systematic changes in DMODE testing for principal
display modes (0,21-24,31-33,1,2,99).
Check for various display modes which do valid displays, and
the boundary display modes.

values are increased with 4096 or 8192 to check if only
lower order bits are being used.

"blank" displays, specific failure display formats, and failures

20-27 Check f o r mod 4096 (all chans), base = #1, 0ffraw:selected

28-52. base = #1, changes in DMODE and LINFAILIN, checking for different

Sep 11 08:39 1987 data.ReadMe esv Page 2 -

of one sensor (28-37), whole faces (two sensors, 38-43),
and various combinations of four failing sensors (44-52),
with one instance of eight failed sensors (50).
The sensors are failed on input, to check for I display.

53-85. base = #1, random activation of different display modes continues
(to ultimately test all values 0-99 by the end of the ESV set).
Noise on calibration (OFFRAW) in steps of +/- 6, +/-12,
+/- 18 and +/- 24. Case 57 test has LINSTD=8, DMODE=l and noise
on calibration channel 1 of +/- 24 (8x3=24).
Also checked are the display failure formats for LINNOISE
values, and the correct use of variable LINSTD, and correct
computation of calibration noise levels.
6 and 24 were chosen because these were the boundary cases
for noisiness for the linstd values chosen.

87-110 changes in LINSTD (9, 2,l with +/- 24 on i/p channels)
to check correct use of LINSTD variable and sensitivity of
the calibration procedure.

86, 111-149. changes in RAWLIN, DMODE, LINFAILIN, various combinations of
failures on input, noise and edgevector failures, base = #l.
Values in RAWLIN are so changed as to reflect an assured failure
in edgevector test, so that there are no ambiguities left.
The values of DMODE are again chosen to test the display
failure format. The failures are combined with failures on input, to
see if the edgevector tests are properly employed.

150-151 Large changes in misalign [i,6] field, only the sixth axis
was chosen for contamination because according to the latest
specifications that is the only angle not used in the
rsdimu procedure. It use significantly changes output values only
if its value is much larger than normal. Changes
in the values of other angles will not provied new information.

152-392. Test cases checking for the minimal sensor noise levels for
failure declaration. Cases 152-365 no prior failures. Cases
3 6 6 - 3 9 2 prior failures on one and two faces.
These test cases test the sensitivity requirements that
all three edges fail the edgevector testi before a failure is
declared. False alarms are raised when only one or two edges fail.
The normal value for the triplet threshold is 49 counts away from
the correct figure for no prior failures on the rsdimu. The
threshold values will change with the number and place
of previous failures.

393-796 CRA proposed test cases with various combinations of
sensors failed on input and up to one additional sensor
failed in the edge vector test.

56 test cases with 1 sensor failed on input.
168 cases with two sensors failed on input.
120 cases with 3 sensors failed on input.
30 cases with 4 sensors failed on input.
8 cases with 7 sensors failed on input.

and the rest are other combinations.

Sep 11 08:39 1987 data.ReadMe - esv Page 3

More detailed information about the ESV test cases can be obtained
by displaying the differences between a chosen base case (# 1 usually)
and a series of other test cases. Utility shell script fts diff,
based on the UNIX diff processor, is provided f o r this purpose.
By executing

fts - diff esv.dat esvdiff 115 123 1

you can obtain, for example, in file esvdiff differences in the input
values of cases 115 to 123 with respect to test case #1 of the data file
esv. dat .
The CRA document regarding choice of random and ESV test cases was provided
as a separate item (not in electronic form) with release 2.0 of RSDIMU-ATS.

S,ep 11 08:39 1987 data.ReadMe random Page 1 -

Fault-Tolerant Software Experiment

THE RANDOM DATA FOR THE ACCEPTANCE TESTING

RSDIMU ACCEPTANCE TESTING SYSTEM (RSDIMU-ATS)

RSDIMU-ATS 3.O/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/OS-Mar-87

This set of 400 random test cases for rsdimu code is provided primarily
for the purpose of estimating the lower limit on the reliability of the
tested code, and as a check on the completeness of the ESV test cases.
The test cases are completely independent,
and no attempt was made to mimic a flight trajectory and
the associated time correlation among the input variable values.
Therefore any cumulative effects linked to time correlation or auto-
correlation remain untested, here and in the extrema1 and special value
(esv.dat) set.

The random data are provide in two sub-sets: randomNCSU.dat and randomCRA.dat.

.

randomNCSU.dat

Within the employed sampling domain the distribution of the generated
input values is essentially flat. ~t contains 2 0 0 test cases.

In all cases the random data were generated using the random number
generator provided with the Pascal comiler (pc, UNIX/Ultrix). Details of the
mapping from the random numbers into the actual input variables are
given below. More details will be supplied on request. The part of
the code used to generate random input values is also enclosed
(as fts NCSUzzrand.i), and it derives in part from the RTI random test
harness-(September 85).

The input variables randomly sampled, or computed on the basis of
randomly sampled values are:

offraw, linfailin, rawlin, misalign, normface, temp, phiv, thetav, psiv,
phi, thetai, psii, dmode, linnoise, linfailout, scale0,1,2, obase,
linstd and nsigt.

A more thorugh understanding of the random generation process and of the
resulting input profiles can be gained by studying the
fts - NCSU2zrand.i code.

The random set, randomNCSU.dat, consists of two hundred random test cases
stratified into two sub-sets. The first one hundred test cases have
the noise on sensors (rawlin) boosted by 200 counts everytime linfailout for a
sensor is true. Thus the sensor noise level is guaranteed to exceed the
sensitivity threshold of about 50 counts and the sensor should be
recognized as failed. The second one hundred test cases, on the other

Sep 11 08:39 1987 data.ReadMe - random Page 2

hand, have the noise added as a uniform distribution between 1 and
maxnoise-1 counts, and at half the uniform frequency for 0 and
maxnoise, the latter value having been read in by the driver program.
In this particular case maxnoise was 110, therefore the added noise

1 was symmetrically centered around the threshold value of 55 counts.

It is important to note that random test cases are intended to run
~ after all ESV test cases have been successfully negotiated. There
are special situations and combinations of variable values that are
covered in ESV test cases and not covered by the sampling domain used
to generate present random test cases. Our experience with the random
testing of rsdimu code is that the sensitivity of the random test cases
to errors is very low. Unless very detailed partitioning is employed
(better to use ESV cases in that case) detection capabilities of the
random test cases to distinct errors saturate extremely quickly.
After 2 to 10 random test cases the same errors are usually detected
over and over again (if not removed). Once past 100 random test cases
detection of new, different, errors becomes an almost negligible
event, unless the random sampling profile is changed and tuned to the
character of the already detected faults, o r partitions not previously
covered are sampled.

For all practical purposes the two sets of 100 test cases, are a single random
set of 200 test cases, which if executed successfully, provides us with
a lower limit for the rsdimu reliability (at the 95% confidence level)
of about 0.985.

initial random seed for 1st 100 cases is: 777

initial random seed for 2nd 100 cases is: 1234567890

.

randomCRA.dat

The second sub-set, randCRA.dat, was generated on the basis of the
CRA document TM8602/26-Aug-86.

CRA random test cases are generated with the specifications provided
in the CEW documents (especially f o r PHIV, PSIV and THETAV, NSIGT =
2..7 etc). The calibration noise is normally distributed, and
the number of noisy sensors during calibration is exponentially
distributed with a parameter of 0.18. The edge vector test can fail
one additional sensor, with random noise of upto 200 counts.
No sensors fail on input. Generation details can be found in
fts - CRAzzrand.i

initial random seed is: 987654321

I .

For all practical purposes the two sets of 2 0 0 test cases, are a single random
set of 400 test cases, which if executed successfully, provides us with
a lower limit for the rsdimu reliability (at the 95% confidence level)
of about 0.992.

c

S s p 11 08:39 1987 data.ReadMe - random Page 3

During the generation of the random test cases care is taken to examine
the obtained data and to eliminate cases where more than one sensor
fails in flight.

Sep 11 08:39 1987 gold.ReadMe Page 1

Fault-Tolerant Software Experiment

THE GOLDEN DISPLAY AND RSDIMU CODES

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

There are 2 files in this directory viz. display.i, and gold3vl.i
:he sources correspond to specification version v3.2/10-Feb-87,

It has been extensively tested as a stand alone module, and
gives results in accordance with the specifications v3.2.
It does not need any special declarations in the main program except for
those which are in the RSDIMU procedure assumed to be
globally available (only the type declarations.)
To use this procedure just use standard #include compiler option, and
the calling format

,
, disp1ay.i contains the display module extracted from the gold program.

display (DISMODE, DISUPPER, DISLOWER);

Use of the golden rsdimu follows the same rules as use of any other rsdimu
code, and is fully explained in the specs (see also certify/driver.p).

4

L

